Adversarial Multi-view Networks for Activity Recognition
نویسندگان
چکیده
منابع مشابه
Multi-view Generative Adversarial Networks
Learning over multi-view data is a challenging problem with strong practical applications. Most related studies focus on the classification point of view and assume that all the views are available at any time. We consider an extension of this framework in two directions. First, based on the BiGAN model, the Multi-view BiGAN (MV-BiGAN) is able to perform density estimation from multi-view input...
متن کاملMulti-View Human Activity Recognition in Distributed Camera Sensor Networks
With the increasing demand on the usage of smart and networked cameras in intelligent and ambient technology environments, development of algorithms for such resource-distributed networks are of great interest. Multi-view action recognition addresses many challenges dealing with view-invariance and occlusion, and due to the huge amount of processing and communicating data in real life applicati...
متن کاملGenerative Multi-Adversarial Networks
Generative adversarial networks (GANs) are a framework for producing a generative model by way of a two-player minimax game. In this paper, we propose the Generative Multi-Adversarial Network (GMAN), a framework that extends GANs to multiple discriminators. In previous work, the successful training of GANs requires modifying the minimax objective to accelerate training early on. In contrast, GM...
متن کاملCrossing Generative Adversarial Networks for Cross-View Person Re-identification
Person re-identification (re-id) refers to matching pedestrians across disjoint yet non-overlapping camera views. The most effective way to match these pedestrians undertaking significant visual variations is to seek reliably invariant features that can describe the person of interest faithfully. Most of existing methods are presented in a supervised manner to produce discriminative features by...
متن کاملMulti-view Gymnastic Activity Recognition with Fused HMM
More and more researchers focus their studies on multi-view activity recognition, because a fixed view could not provide enough information for recognition. In this paper, we use multi-view features to recognize six kinds of gymnastic activities. Firstly, shape-based features are extracted from two orthogonal cameras in the form of transform. Then a multi-view approach based on Fused HMM is pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
سال: 2020
ISSN: 2474-9567
DOI: 10.1145/3397323